Multi-modal wellbeing sensing and computing: mobility pattern, sleep quality, physical activity, circadian rhythm, and indoor environment

Jointly utilizing different sensor streams from your smartphone, smartwatch, and smart home environment devices can create some pretty amazing personal health informatics.

Status of this project: on the back burner, but collaborators welcome

Publications:

  • Wu, C., Fisher, A., & Schnyer, D. (2022). Gaussian Latent Dirichlet Allocation for Discrete Human State Discovery. arXiv preprint arXiv:2206.14233. To be submitted to ACM Transactions on Computing for Healthcare.
  • Fritz, H., Kinney, K. A., Wu, C., Schnyer, D. M., & Nagy, Z. (2022). Data fusion of mobile and environmental sensing devices to understand the effect of the indoor environment on measured and self-reported sleep quality. Building and Environment214, 108835.
  • Wu, C., Fritz, H., Bastami, S., Maestre, J. P., Thomaz, E., Julien, C., … & Nagy, Z. (2021). Multi-modal data collection for measuring health, behavior, and living environment of large-scale participant cohorts. GigaScience10(6), giab044.
  • Wu, C., McMahon, M., Fritz, H., & Schnyer, D. M. (2022). circadian rhythms are not captured equal: Exploring Circadian metrics extracted by different computational methods from smartphone accelerometer and GPS sensors in daily life tracking. Digital Health8, 20552076221114201.
  • Wu, C., Fritz, H., Craddock, C., Kinney, K. A., Castelli, D. M., & Schnyer, D. M. (2021). Exploring Post COVID-19 Outbreak Intradaily Mobility Pattern Change in College Students: a GPS-focused Smartphone Sensing Study. Frontiers in Digital Health, 169.
  • Boukhechba, M., Cai, L., Wu, C., & Barnes, L. E. (2019). ActiPPG: using deep neural networks for activity recognition from wrist-worn photoplethysmography (PPG) sensors. Smart Health14, 100082.
  • Cai, L., Boukhechba, M., Wu, C., Chow, P. I., Teachman, B. A., Barnes, L. E., & Gerber, M. S. (2018, September). State affect recognition using smartphone sensing data. In Proceedings of the 2018 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (pp. 120-125).